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ABSTRACT 

The area of non-destructive evaluation using eddy current methods is continuously evolving 

with the better understanding of the technique. In the past decade or so, new designs have 

emerged for excitation coils which has led to a need for new modelling schemes. There has been 

a trend towards the use of magnetic field sensors for the measurement of the scattered field 

from the conductor body as an alternative to induction coils. Along with the changes in the 

driver-pickup arrangement, there are changes in the area of computation methods of finding 

solutions to the forward and inverse problems. We need to have a good forward models for 

finding solutions to an inverse problem . Use of newer discretization schemes has led to better 

and faster models. In this thesis, I have examined two aspects of the problem of eddy current 

detection. The first part is devoted to the development of a new analysis of a racetrack coil 

used with an array of magnetic field sensors. The later part is dedicated to finding a numerical 

solution to the problem of the interaction of the excitation coil with a flaw. The solution uses 

edge element basis functions for the expansion of the unknown field in the flaw. 
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CHAPTER 1. OVERVIEW 

Advances in the area of non-destructive evaluation (NDE) using eddy current methods have 

lead to an increase in there value to industry. These advances are related to the development 

of new coil designs, the use of magnetic sensors for the detection of the scattered field, the 

modelling of complex geometries using different meshing schemes and the development of 

improved methods for the solution of forward and inverse problem. These developments have 

lead to the better understanding of the technical details of eddy current problems. In the 

general eddy current problem, a coil or a magnetic field sensor, e.g. giant magneto-resistive 

sensor (GMR), amorphous magneto-resistive sensor (AMR), extraordinary magneto-resistive 

sensor (EMR), Hall sensor etc., detects field perturbations due to the variation of conductivity 

and permeability of an electrically conducting component. A crack or flaw is defined to be 

a region that does not conduct electricity. Hence it will perturb the surrounding field and 

cause a disturbance of the field which can be then sensed by the pick-up coil or probe or a 

magnetic field sensor. As the magnetic field sensors have a higher spatial resolution than the 

pick-up coils, they are more effective at imaging the flaw. This leads to a demand of the use 

of magnetic field sensors in the eddy current applications. 

The other area of development in eddy current NDE is solving the inverse problem in which 

the characteristics of an actual physical flaw are found from flaw measurements. Usually this 

problem requires the solution of the forward problem first. In a forward problem we have 

a known flaw profile and try to estimate theoretically its interaction with an eddy current 

excitation coil. There are many different ways of solving a forward problem, e.g finite element 

method (FEM), integral equations (IE) etc. 

Over the past years a lot of work on FEM has been carried out to achieve better numerical 
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modelling of different problems in electromagnetism. The FEM has been applied to scattering 

problems, material interface problems, eddy current problems and many more. A detailed 

discussion of the application of FEM in eddy current problems is presented by Albanese and 

Rubinacci, (2). They have proposed the solution of a problem based on the edge element 

formulation, whose degrees of freedom are associated with the tangential components of the 

vector field along the edges of volume elements, in conjunction with the tree-cotree decompo-

sition of the discretizing mesh. They have first developed the mathematical model and then 

shown the application of the edge element based integral formulation for linear and nonlinear 

eddy current problems. A discussion on the benefits of using vector potentials with a gauge 

condition, e.g. classic Coulomb and Lorentz gauges, in dealing with eddy current problems, 

material interfaces and magnetostatic problems are also presented. 

A similar treatment of computational methods in electromagnetism is presented in the 

book "Cm;nputational Electromagnetism" by Bossavit, (6), and "The Finite Element Method 

in Electromagnetics" by Jin, (24). Bossavit presented a mathematical analysis of edge elements 

in terms of Whitney elements and the application of tree-cotree decomposition is described for 

curl-free fields. Use of tree-cotree decomposition then guarantees a unique solution of the 

problem. Jin has presented a discussion on the application of FEM in waveguide and cavity 

problems. He has also looked at three dimensional edge elements for different discretization 

geometries and described FEM matrix solution methods using LU and LDLT decomposition, 

and the conjugate gradient approach. 

Another application of edge elements is for resonant cavities where the problem of spurious 

modes, which appears using conventional nodal elements, is avoided. Sun, Manges, Yuan and 

Cendes examined the spurious modes problem in their paper, (31). They have discussed the 

spurious modes problem in the solution of a vector wave equation which arises due to the 

inconsistent approximations of the static solutions to the wave equation. These modes are 

caused because of the incorrect approximation of the null space of the curl operator. In the 

paper they have presented the use of tangential-vector finite elements to ensure tangential 

continuity of the vector field and hence avoided the inconsistencies in the solution process. 
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Albanese and Rubinacci described an integral formulation of the eddy current problem 

using edge elements, (3). They presented the formulation based on the current vector potential 

approach, i.e. the current density is defined as a curl of a vector, which assures the solenoidality 

of current density. The gauge condition and the boundary conditions are directly imposed by 

the edge element shape functions and the methods of network theory. Based on this theory 

they have developed a FEM code employing an eight-node brick element structure. They have 

also compared integral and differential methods in an eddy current problem using a vector 

potential formulation, ( 4). 

Integral equation formulations have also taken advantage of new developments in the type 

of basis functions for the expansion of the unknowns. Schaubert, Wilton and Glisson in 

their paper, (31), presented the use of tetrahedral modelling along with the use of special 

basis functions which ensure the normal continuity of the flux density across the faces of the 

tetrahedrons. This eliminates the problem of the divergence of the solution as compared to 

the case where pulse basis functions are used for expansion. 

A similar analysis of basis functions is also presented by Graglia, Wilton and Peterson, (20). 

They have presented vector basis functions that are compatible with the curl-conforming and 

divergence-conforming mixed-order Nedelec spaces. Curl-conforming functions, which main-

tains only tangential continuity across the element boundaries, are helpful in modelling fields 

at the material boundaries and are able to suppress the spurious modes. They are appropriate 

for discretization of the vector Helmholtz operator. On the other hand, divergence-conforming 

functions maintain normal continuity across the element interface. They eliminate spurious 

solutions in the electric field integral equation (EFIE). Different discretization schemes, e.g. tri-

angular, quadrilateral, tetrahedral, brick elements, and curvilinear, along with curl-conforming 

and divergence-conforming basis functions are described, (20). 

The use of the EFIE for an eddy current problem of a surface crack has been presented 

by Bowler, Jenkins, H. Sabbagh and L. Sabbagh, (10). A change of coil impedance due to 

the scattered field of a volumetric flaw is determined. A volume integral equation with a 

dyadic kernel has been derived and the numerical solution is found by the use of the moment 
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method and the conjugate gradient approach. The theoretical results are then compared with 

experimental results. A detailed analysis of the calculation of the eddy current response using 

dyadic kernels is presented by Bowler, (9). In the report, both forward problems and inverse 

problems are addressed for an ideal crack problem. In addition, a detailed analysis of the EFIE 

approach using dyadic Green's function is giving for cracks in a half-space, slab and layered 

conductors. Rooftop basis functions are used for finding the solution numerically for the crack 

interaction problem. A detailed analysis on handling the singularity of the Green's function is 

also given. A similar approach for handling the singularity of the Green's function is presented 

by Lee, Boersma, Law and Deschamps, (26). 

The use of edge element shape functions instead of rooftop functions in the EFIE eddy 

current problem has been presented by Rubinacci and Tamburrino, (30). They expanded the 

unknown current density in terms of the curl of the edge based shape function to ensure normal 

continuity across the surface of the discretization cell and hence will suppress spurious modes 

in the EFIE solution as describe by Graglia, Wilton and Peterson in (20). 

With the above background, I have obtained solutions of an eddy current problem using the 

electric field integral equation based techniques. The two main topics presented here concern 

a new eddy current coil analysis for a racetrack coil to be used with an array of magnetic field 

sensors, Chapter 2, and in Chapter 3, a new discretization scheme for solving the EFIE using 

edge elements following the fromulation given in reference (30). 

1.1 NEW COIL DEVELOPMENT FOR AN ARRAY OF MAGNETIC 

FIELD SENSORS 

The advantages of a magnetic field sensor over a pick-up coil are describe earlier. A 

drawback of using a single sensor, whether it be a solid state sensor or a pick-up coil, is that 

a two dimensional scan is usually needed to cover a given area. That can be time consuming 

procedure. Therefore, the next step in the development process is to have a linear array of 

sensors. This will result in a rapid inspection as we can scan a larger area in fewer steps in one 

direction. Also we can multiplex the signals from all the sensors to a few or only one channel, 
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therefore achieving a cost effective and efficient solution. As we are moving towards the use 

of a linear array of sensors, the most effective shape for the excitation coil is a "racetrack" 

design, where we have two straight parts and two semicircular bends, Fig. 1.1. The sensors 

are aligned parallel to the straight parts of the coil, hence the field experienced by each sensor 

will similar yet the coil design is compact. 

A magnetic shell model is used for finding the electric field response of the excitation coil, 

(8). The problem of calculating the coil field is then subdivided into two parts. In the first 

part, the electric field due to the straight parts only is found and in the second part, the electric 

field due to the semicircular bends is computed. To find the response of recess in a stratified 

conductor, two methods were used in which the EFIE is used to calculate the dipole density. 

This was accomplished using a dyadic form of the Green's function, (9) - (8), (33). The earlier 

method for handling of the singularity of the Green's function is given in (9), (26). Rooftop 

basis functions are used for expanding the unknown dipole density. The earlier EFIE is solved 

using Galerkin method for moment method, (9) with point matching scheme. Analysis of the 

new coil is validated by comparing the results of a limiting case of racetrack coil where the 

straight parts are set to zero to that of a circular coil results. The new method for finding the 

dipole density from the EFIE uses edge element basis function. 

1.2 USE OF NEW BASIS FUNCTION FOR FINDING THE DIPOLE 

DENSITY 

For finding the response of a crack or flaw interaction with a excitation coil, we need to solve 

for the unknown dipole density due to the excitation coil in the flaw region. This is solved using 

the EFIE method, as described earlier. One of the main property of the dipole density inside 

a homogeneous flaw is that it has zero divergence. This property is not guaranteed by using 

rooftop basis function, which are used earlier in the volume element scheme. A basis function 

that ensures the above property of zero divergence is the edge shaped basis function (2) - (3), 

(24), (30). By expanding the unknown dipole density as a curl of these new basis functions, 

i.e. forming a divergence-conforming basis, ensure the removal of spurious modes from the 
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EFIE solution set. The next step of development is to use tree-cotree decomposition, (2), (6), 

(30), which will eliminate dependent equations and hence we will have a unique solution to 

the problem along with better convergence. Using the new set of basis functions and tree-

cotree decomposition, a set of matrix equations are formed for solving for the unknown dipole 

densities. An LU decomposition, (24) and (29), is used for solving the set of linear equations. 

A comparison is made between the results of the new technique with that of the point matching 

scheme. 
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Figure 1.1 Racetrack probe geometry showing straight parts and semicir-
cular bends along with linear array of magnetic field sensors. 
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CHAPTER 2. EDDY CURRENT EXCITATION USING A 

RACETRACK COIL WITH A SENSOR ARRAY FOR MAGNETIC 

FIELD MEASUREMENT 

A paper to be submitted to the Journal of Applied Physics 

J. R. Bowler 1 and V. Katyal 2 

ABSTRACT 

Calculations have been performed to determine the response of a new eddy current probe 

for the detection of subsurface flaws in planar multilayered structures. The probe consists 

of a racetrack coil and a linear array of solid state sensors for detecting perturbations in the 

electromagnetic field due to defects. The sensor array allows field measurements to be made 

at a number of closely spaced locations without moving the probe and thereby accelerates 

the inspection process. A magnetic shell model of the probe is used for finding the electric 

field in the unflawed structure. The fields due to the linear "straights" and the semicircular 

"bends" are found separately and added to give the combined field of the racetrack coil. The 

flaw response is then computed using a volume element calculation. In order to validate the 

calculation, field predictions for a racetrack coil having straights of zero length are compared 

with results for a circular coil. The results are found to be consistent. 

2.1 INTRODUCTION 

In eddy current inspection, an induction coil is often used both to induce current in a 

conducting component and to detect magnetic field perturbations due to flaws. For subsurface 
1 Professor, Department of Electrical and Computer Engineering, Iowa State University 
2 Graduate Student, Department of Electrical and Computer Engineering, Iowa State University 
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defects, a low frequency excitation ensures an adequate depth of field penetration. However, 

at lower frequencies the effectiveness of the coil as both inducer and sensor is diminished since 

electromagnetic induction depends on the rate of change of magnetic flux. To overcome the 

limitations of the induction coil as a low frequency field sensor, a solid state device, such as a 

giant magneto-resistor or Hall sensor, can be used instead. A coil used only as driver can be 

larger than otherwise without compromising the spatial resolution of the measurements. The 

large coil can produce a greater field while good spatial resolution is obtained by using small 

sensors. 

This article gives the analysis of an eddy current probe for the detection of subsurface 

flaws in multilayered structures such as aircraft skins. The probe contains a racetrack coil with 

semi-circular bends and linear straights, Fig. 2.1. The magnetic field between the straights is 

measured using a linear array of magnetic field sensors. The sensor array samples the magnetic 

field at multiple sites without moving the probe and hence reduces the inspection time. The 

overall objective of this work is to evaluate the capabilities of array probes and assess their 

performance for the detection of cracks, material loss and surface roughness due to corrosion. 

Here we focus on the details of the coil field calculation. 

The theory for computing the electromagnetic field of a racetrack coil, Fig. 2.1, has been 

developed by determining separately the electric field due to the bends and the straights and 

summing to obtain the total field. Section II gives the theory for the straight linear coil 

elements and Section III describes the solution for the D-coil representing a semicircular bend. 

The results and conclusions follow the analysis sections. 

2.2 LINEAR COIL FIELD 

The following account describes the calculation of the electric field induced in a conductor 

by a time-harmonic current in a linear coil consisting of only the straight parts of the racetrack 

coil shown in Fig. 2.1. The current path is closed by joining the ends of the straights by 

current filaments but ultimately the effect of these filaments is cancelled by similar filaments 

added to the representation of the bends. Results are given for a field in a homogeneous half-
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space conductor in the region z < 0, and an infinite conducting plate. However, similar results 

for layered conductors are readily obtained by simply changing the Green's functions used in 

the present calculation in favor of one which embodies the correct interface conditions of a 

stratified conductor. The magnetic dipole formulation used in this section to represent the 

field of the straights is also used for the bends in the next section. 

Consider a non-magnetic conductor occupying the half-space defined by z < 0, excited by 

a current source. The electric field in adjoining half-spaces is a solenoidal solution of, 

\72E(r) = JWµo J (r), z ~ 0 and (v2 -Jwµ0a) E(r) = O, z < 0, (2.1) 

where a is the conductivity of the conductor. The electric field, being transverse to the 

z-direction and having zero divergence, can be expressed in terms of a transverse electric 

(TE), scalar potential: 

E(r) = -Jwµ\7 x z'ljJ'(r) (2.2) 

where z is a unit vector in the preferred direction. The transverse source current J(r), having 

zero divergence, can similarly be written in transverse scalar form as 

J(r) = _!_\7 x [zM(r)]. 
µo 

(2.3) 

The function M(r) represents the current source in terms of the magnetic dipole density, the 

orientation of the polarization being in the z-direction. This is an adaptation of the magnetic 

shell model which represents a filamentary current loop in terms of magnetic shell bounded 

by the loop. Here, the magnetic dipole distribution occupies a volumetric region between the 

upper and lower extent of the coil where h + c ~ z ~ h - c, 2c being the height of the coil and 

h the height of the mid point of the coil above the surface of the conductor. 

Equations (2.2) and (2.3) are substituted into (2.1) to give 

and (v2 - Jwµ0a) 'l/J'(r) = 0, z < 0. (2.4) 

An expression for the solution in terms of a Green's function, satisfying 

\72G(r, r') = -c5(r - r'), z ~ 0 and (v2 - Jwµ0a) G(r,r') = 0, z < 0, (2.5) 
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is written as 

7/J' (r) = _!__ { G(r, r') M(r') dr. 
µo loo (2.6) 

where the Green's function, like 'lj;', is continuous at the air conductor interface, has a contin-

uous normal gradient and vanishes at infinity. The Fourier transform with respect to x and y 

is written 

f (u, v) = 1_: 1_: f(x, y)e-iux-ivy dxdy. (2.7) 

Hence by taking the Fourier transform of equation (2.6) with respect to x and y, and noting 

the convolutional properties of the integral, it is found that 

CV 1 1h+c 7/J'(u,v,z) = - g(u,v,z,z') m(u,v,z')dz', 
µo h-c 

(2.8) 

where the integration is between the lower and upper limits of the source coil and g and mare 

the Fourier transforms of G and M respectively. 

The y-component of the current density in the straight elements of the source coil, Fig. 

2.1, is written as 

{ 
nlsign(x), 

ly(r) = 
0, 

h- cs z sh+ c, 

otherwise 

b S lxl Sa, IYI s d, 
(2.9) 

where I is the current, n the number of turns per unit area and the current is deemed to flow 

in a counter-clockwise direction viewed from above. It can be deduced from (2.3), by writing 

that 

{ 
µonI f (x, y), 

M(x,y,z) = 
h-cszsh+c 

0, 

a-b, 

f(x, y) a- lxl, 

0, 

otherwise 

0 S lxl Sb, 

b S lxl Sa, 

otherwise. 

IYI s d, 

IYI s d, 

(2.10) 

(2.11) 

Because f (x, y) is even in x and y, the Fourier transform may be written in the form of the 

double cosine integral 

CV 

f (u, v) 4 fo 00 fo 00 f(x,y)cos(ux)cos(vy) dxdy 

4 . 
--2- [cos(ua) - cos(ub)] sm(vd). 

u v 
(2.12) 
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An expression for the electric field which can be evaluated numerically is obtained in the 

following way. The Fourier transform of (2.2) with respect to x and y is 

~ 

e(u,v,z) = -wµo(vx-ufJ) ,,P'(u,v,z) (2.13) 

~ 

where,,P' is given by (2.8) and (2.10) as 

~ ~ 1h+c~ 
,,P' ( u, v, z) = nI f ( u, v) g ( u, v, z, z') dz', 

h-c 
z < 0. (2.14) 

For a half-space conductor 

~ ( ') _ 1 "(Z-K-Z1 
9H-SK,,Z,Z ---e 

'Y + K, 
(2.15) 

where/= J "'2 + jwµ0 CJ, taking the root with a positive real part. Similarly, Green's function 

for a slab is computed by taking into account the reflection from the internal surfaces, 

~g ( ') - _l_ "(Z-K-z' 1 + re-2'Y(d+z) 
Slab "'' z, z - 1 + "'e -l---f-2e ___ 2_"f_d_ (2.16) 

where r = 7+~, the reflection term and d = height of the slab. Performing the integration in 

(2.14) gives 

;'(u,v,z) = 2nlf(u,v)g(u,v,z,h)sinh("'c)/"', z < 0, (2.17) 

hence by substituting into (2.13) it is found that 

~ vx - ufJ ~ ~ 
e (u, v, z) = -2wµonI f (u, v) g (u, v, z, h) sinh("'c), 

K, 
z < o. (2.18) 

The electric field can now be computed using a fast-Fourier-transform algorithm. 

2.3 D-COIL FIELD 

Two D-coils are used to represent the bends of the racetrack coil, Fig. 2.1. Using essentially 

the same formulation that was used for the linear coil, ,,P' for the D-coil is written as in (2.6). 

It is convenient to express the Green's function in cylindrical polar coordinates, as 

(2.19) 

which can be derived using an approach given by Morse and Feshbach (1). In (2.19), Em is 

the Neumann factor: Eo = 1 and Em = 2 (m = 1, 2, 3, ... ). For the interior of a half-space 
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conductor, g is given by (2.15). For for a slab, g is given by (2.16). In order to evaluate (2.6), 

the explicit form of M(r) appropriate for the D-coil must be found. This form is developed as 

follows. 

The azimuthal counter-clockwise current in a D-coil is written as 

{ 
nl, 

J</>(r) = 
o, 

h - c ::; z ::; h + c, 
(2.20) 

otherwise. 

where I is the current, n the number of turns per unit area. It can be deduced from (2.20), by 

writing 

M(p,¢,z) = { µonlfn(p), 
0, 

h - c ::; z ::; h + c, 
(2.21) 

otherwise 

that 

a-b, 0 :'.Sp::; b, 

fn(P) a-p, b :'.S p::; a, (2.22) 

0, otherwise 

It is now possible to obtain 'l/J' by substituting equations (2.19) and (2.21) into (2.6). 

Integration with respect to p', ¢' and z' gives a summation of integrals with respect to K,; 

[ 1 00 4 
'l/J'(r) = nl ; ~ 2.X + 1 sin[(2.X+1)¢) 

x fo00 
[ J2>.+i (K,p):F2>.+i (a, b, K,) g (K,, z, h) sinh(K,c)) dK, 

+ fo 00 [Jo(K,p):Fo(a,b,K,)g(K,,z,h)sinh(K,c)]dK,] (2.23) 

where 

:Fv(a, b, K,) foa f n(p)Jv(K,p)pdp 

= : 2 [a.7J1l(K,a) -b.JJ!l(K,b)] - : 3 [.rJ2l(K,a) - .JJ2l(K,b)] (2.24) 

with Jn given by (2.22) and 

(2.25) 

These functions are evaluated for v > 3 with the aid of a recursion relationship 

(2.26) 
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derived using Eq 11.3.6 of reference (2). 

The integrals with respect to K, must be computed numerically and the summation in (2.23) 

truncated at a suitable order depending on the required accuracy of the result. For the double-

D filament loop (3) a truncated series of five terms is sufficiently accurate in most cases and 

the same is true for the series in (2.23) representing the potential due to a racetrack coil bend. 

From equation (2.2), the electric field in cylindrical coordinates is 

(
Al a A a) I E(r) = -3wµo p-- - </>- 'ljJ (r). 
P a<1> ap (2.27) 

The components of the electric field are therefore, 

Ep(r) = - 43 wµonl £: cos[(2,\ + 1)</>] 
7rp .X=O 

x fo00 h.x+1 (ti,p)F2_x+1 (a, b, K,) g (K,, z, zo, h) sinh(K,c) dK, (2.28) 

and 

respectively. 

2.4 RESULTS 

The sensor signals due to a square recess in the bottom surface of a plate of thickness 4.85 

mm, Fig. 2.2, with the racetrack coil above the plate providing the excitation field has been 

calculated using a volume element code (4). The dimensions of the recess are 25.4 mm x 25.4 

mm x 3 mm. These and other parameters are given in Table 2.1. 

The sensors measure the magnetic field component normal to the surface of the conductor. 

Fig. 2.3, compares the variation with probe position of the normal magnetic field at a central 

sensor. Field values are normalized to a coil current of 1 Amp. The field variation is due 

to the back surface recess is plotted for different racetrack excitation coils. One has 64 mm 
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total straight sections, one has 24 mm total straight sections, one has 4 mm total straight 

sections and the other has no straight sections and is thus a circular coil. Results from the 

zero straight section coil using computer code for the racetrack analysis agree with results for 

a dedicated circular coil calculation (5). The absolute value of the z-component of the field 

found by simulating the response of a 33 element sensor array is shown in Fig. 2.4. 

2.5 CONCLUSION 

The theory for a racetrack coil in the presence of a stratified conductor has been given in 

two parts based on a formulation using a magnetic dipole representation of the effect of the 

coil. In the first part the field due to the straight sections of the track are found using a two 

dimensional Fourier transform, and in the second part, the field due to the semicircular bends 

of the track are determined using integrals containing Bessel functions. The racetrack coil 

geometry will be incorporated into a probe design in which an array of magnetic sensors are 

located along the center line of the track parallel to the straight sections. In this way the local 

applied field experienced by each sensor is similar yet the probe itself is compact and easy to 

manipulate. 
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Table 2.1 Test parameters for magnetic sensor measurements on a hidden 
surface material-loss specimen. 

Coil 
Outer radius 
Inner radius 
Axial length 
Nominal lift-off 
Number of turns 
Number of sensors 
Height of sensors 
Distance between sensors 
Frequency 

Conductivity 
Thickness 

Length 
Width 
Depth 

Plate 

Flaw 

10.625 mm 
1.6875 mm 
4.98 mm 
2.5825 mm 
337±1 
33 
0.869 mm 
2.0 mm 
2000 Hz 

1.82 x 107 S/m 
4.85 mm 

25.4 mm 
25.4 mm 
3.00 mm 
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Figure 2.1 Racetrack probe showing coil geometry and magnetic field sen-
sor array. 
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Figure 2.2 Conducting plate with a square recess. 
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Figure 2.4 Magnitude of the magnetic field at 32 sensor sites due to race-
track coil excitation of a metal plate containing a back surface 
recess, Fig. 2. The excitation frequency is 2000 Hz, 2d = 64 
mm (see Fig. 1) and the other probe dimensions are as given 
in Table 2.1. 
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CHAPTER 3. FLAW DISCRETIZATION USING EDGE ELEMENTS 

3.1 INTRODUCTION 

An eddy current problem can be solved using many different methods such as the finite 

element method, the finite difference time domain and the integral equation method. In the 

preceding chapter, an electric field based integral equation method was employed for finding 

the magnetic field sensor response (9). In the electric field integral equation formulation 

adapted here, the solution is the unknown dipole density inside the flaw or crack region due 

the excitation coil. Following the method of moments approach, the unknown dipole density 

distribution is expanded in terms of basis functions and testing functions are used for forming 

a matrix equation. The advantage of integral equation based techniques over other techniques 

is that we only need to solve for the field in the flaw region only provided the Green's function 

for the unflawed structure is known. In other techniques we need to discretize whole of the 

conductor body in order to find a solution. Because we have a small solution region, fewer 

unknowns are needed and a solution can be found faster than with other methods. In the 

integral equation based technique, the flaw is divided into cells and method of moment along 

with Galerkin method is used for solving for the unknowns. Typically, a piecewise constant 

basis function is used. As described in the previous chapter on the sensor response, rooftop 

shaped volume element functions are used for the discretization along with a point matching 

scheme for defining a matrix approximation of the integral equation. The disadvantage of this 

scheme is that it does not necessarily guarantee zero divergence of the electric field, which is 

required for the correct dipole density inside the flaw region. 

An improved discretization scheme, based on edge element functions, has been developed 

in which the basis functions have zero divergence, (2) - (3), (24), (30). Edge element shape 
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functions has the property of tangential continuity across the edges and also across the surface. 

Hence, if we express our unknown dipole density as a linear combination of the curl of these 

edge element shape function then we can guarantee zero divergence and normal continuity 

across the facets and by doing that we should have a better convergence to the solution as 

compared to the previous one. A significant advantage of using edge element basis functions 

is that their shape can be modified to conform to the boundary of an object. This allows 

accurate modelling of complex geometries. 

In the next few sections a detailed analysis of the basic formulation of the theory using 

edge based shaped function for the eddy current problem is presented. The basic formulation 

was developed by G. Rubinacci and A. Tamburrino, reference (30). Its numerical application 

for a flaw in a half-space conductor is developed in this thesis using the definitions of edge 

shaped basis function as given in (24). 

3.2 MATRIX EVALUATION - THEORY 

3.2.1 Mathematical Model 

Let us assume that we have a volumetric flaw having a constant conductivity of a f within 

a three dimensional domain n f in a conducting half space or a slab. Assume also that the 

host material is made up of a linear, isotropic, non-dispersive, non-magnetic and homogeneous 

material of conductivity of ao. With these assumptions, we can write the governing Maxwell's 

equations for the region inside the conducting slab for a sinusoidal time varying field, as 

V' x E )WµoH 

\7 x H a(r)E - JWEoE 

Y'·E p 
Eo 

Y'·H 0 (3.1) 
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and 
ao, for 

a(r) = a 1, for (3.2) 

0, otherwise, 

where no is the domain of the conductor. 

For an eddy current problem, we can simplify (3.1) by neglecting the displacement term, 

J WEoE. We can rewrite Ampere's law as 

\7 x H = P + aoE, (3.3) 

where P is the dipole density given by 

P = (a(r) - ao)E. (3.4) 

The dipole density will have a non-zero value only in the region of the flaw. The dipole density 

can be found from the integral equation (9), 

P(r) = pi(r) + (ao - a1)Jwµo f gee(rlr') · P(r')dr' ln1 
(3.5) 

where Pi(r) = (ao - O"J )Ei(r), Ei(r) is the incident electric field inside the conductor and 

gee(rlr') is the electric-electric dyadic Green's function which transforms an electric source 

into the electric field. 

By assuming that there is no impressed charge density inside the flaw region, we will have 

\7 · E = 0, (3.6) 

0 

where Of represents the volume inside the flaw region excluding the boundary where charge 

resides. From (3.4) and (3.6) we have, 

\7. p = 0, (3.7) 

0 

which means that the P is solenoidal in Of· 
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3.2.2 Numerical Model 

Galerkin's method is applied to (3.5) for finding numerically the dipole density P in the 
0 

flaw region. The solenoidal property of P in Ot can be ensured by expressing it in terms of 

electric vector potential U as, 

P = 'Y(r)V' x U (3.8) 

where, 

{ 
1, 

'Y(r) = 
0, 

(3.9) 
otherwise 

Permissible vector potentials differ by an irrotational vector field. To ensure that the vector 

potential is uniquely defined one needs only to eliminate all irrotational fields from its functional 

space. In this way, the gauge condition, to be applied later, will make the solution field U 

unique. The electric vector potential, U, can be approximated by an expansion in terms of 

I-Whitney edge elements (2), (6). Thus, we can write1 

E 

U= LUeNe, 
e=l 

(3.10) 

where Ne 's are the edge element based shape functions, e represents and edge of the discretiza-

tion mesh and E are the number of mesh edges. Combining (3.8) and (3.10) gives2 

E 

P = V' XU= L Ue V' X Ne (3.11) 
e=l 

Further discussion on edge element basis function is given in the next appendix. Galerkin's 

method applied to (3.5) gives, 

where, 

(R - JWL)U =yo 

(V0 )i = { V' x Ni(r) · E(o)(r)dr 
inf 

(R)ij = l { V' x Ni(r) · V' x Nj(r)dr 
ao - a1 lnf 

(3.12) 

(3.13) 

(3.14) 

1 The edge elements have a zero divergence and a nonzero curl. Hence, the expansion of U using edge elements 
guarantees the tangential continuity of U across the edges but also guarantees the tangential continuity across 
the surface. 

2 the form of the expansion guarantee that P will have a zero divergence. Hence the normal continuity across 
facets is also guaranteed. 
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(L)ij = µo { { V' x Ni(r) · gee(rlr') · V' x Nj(r')dr'dr ln1 ln1 
(3.15) 

The dyadic Green's function gee can be written as (9), 

(3.16) 

where g3e is the free space electric-electric dyadic Green's function with conductivity of ao, 

(33), and 8gee is a continuous function in D0 \n1, (9). The free space dyadic Green's function 

can be written as, 

(3.17) 

where I is the unity dyad and 

-1klr-r'I 

Go(rlr') = : I 'I' 1f r - r 
(3.18) 

The term 5gee(rlr') for a half space conductor can be express as the sum of an image term 

and a transverse electric term, b[V' x z[V'' x zV(rlr')]] accounting for the partial reflection 

from the interface, ( 9). Thus 

5gee(rlr') = [I+ : 2 V'V'] · I'Go(rlr' - 22z') + : 2 [V' x z[V'' x zV(rlr')]] (3.19) 

where I'= xx+ f)f) - 22 and 

V(rlr') = ±]__Lz(k,p, lz + z'I) - 2Go(rlr' - 22z') 
21f 

(3.20) 

where p2 = (x - x') 2 + (y - y') 2 . The + sign holds if z + z' < 0 and - sign if z + z > 0. Lz 

represents the partial derivative of L which is defined by Foster-Lien integral. 

We can rewrite (3.15) as, 

L =Lo+ 8L (3.21) 

where 

(3.22) 

and 

(3.23) 
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As 8L doesn't contain any singularities, standard numerical methods can be used for its com-

putation. Whereas, for the case of Lo, which contains a singularity, it is helpful do divide the 

integration into volume term and surface term, 

where 

(L6)ij = µo { { \7 x Ni(r) · Go(rlr')V x Nj(r')dr'dr ln1 ln1 

and the surface term is derived from 

(3.24) 

(3.25) 

For the surface term, the hyper-singular term VVG0 (rlr') acts on a vector field in the following 

way, 

VVGo(rlr') · w(r) = \7 [v · {/ Go(rlr') w(r)dr} J (3.27) 

Hence we can write (3.26) as, 

(3.28) 

Because 

\7 · [A'lj;] =A· \71/J if \7 ·A= 0 (3.29) 

therefore, (3.28) reduces to, 

(3.30) 

By using divergence theorem on both the integrals and noting that \7 · [Go(rlr')Pj(r')] 

-\71 • [Go(rlr')Pj(r')], (3.30) reduces further to, 

where Si and Sj are the surfaces of the flaw element for Oi and Oj respectively and fi(r) 

represents an outward normal direction of a surface. 
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3.2.2.1 Volume Matrix Evaluation - L6 

For simplicity, first consider a one dimensional problem in which the moment method is 

applied with the basis functions 'l/J1(x), which are non-zero over the range x1 < x < x1 + ~x, 

where ~x is the size of the unit cell, x1 = l~x and l = 0, 1, 2, ... N - 1. Suppose also that the 

basis functions have the property 'l/Jk-I ( x) = 'l/Jk ( x - ~x). By applying the moment method, 

matrix elements are defined by, 

(3.32) 

where ¢k represents testing function which are non-zero over the range Xk < x < Xk + ~x, 
where k = 0, 1, 2, ... N - 1. We can rewrite (3.32) by expanding the integrals from -oo to oo 

as the basis function is zero outside its specified range. Hence 

hK = 1_: 1_: ¢k(x)G(x - x')V;K(x')dx'dx (3.33) 

Let xo = x - x' and write ¢1(x) = </Jo(x - x1), to give, 

(3.34) 

Now let x - Xk = x', hence 

(3.35) 

By assuming xk - x0 = x0, we can rewrite (3.34) as, 

(3.36) 

Define, 

(3.37) 

Hence, (3.36) reduces to 

hK = 1_: f3K(xa)G(xk - xa)dxa, (3.38) 

Hence hK, defined in (3.32), can be computed from (3.38), which is equivalent to having /3j as 

the basis functions and testing with delta functions. Thus (3.38) is effectively a point matching 

formulae for a solution expanded in terms of /3j. 
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For the corresponding three dimensional case, the matrix elements with a convolution kernel 

are defined as, 

Lklm,KLM = r r ¢klm(r)G(r - r')'l/JKLM(r')dr'dr 
lvkim lvKLM 

(3.39) 

where Vklm is the volume defining the support of ¢klm(r) and VKLM is the volume defining the 

support of ¢klm(r). By generalizing the above argument from the one dimensional moment 

method case, it is found that 

Lklm,KLM = r Go(rk1mlr').8KLM(r')dr' 
lo.KLM 

(3.40) 

where 0.KLM is the volume defined by (K-l)~x :S x < (K+l)~x, (L-l)~y :'.Sy< (K+l)~y, 

(K - l)~x ::; x < (K + l)~x . With the origin of the coordinate system suitably chosen we 

can write (3.40) as, 

Lklm,KLM = r G(Olr').Bklm(r')dr' 
Jnklm 

(3.41) 

Hence, 

(3.42) 

where E and €1 (E, E1 = 1, 2, ... 12) are the local edge indices for the ith and jth global mesh 

edges and .BEE',klm(r') is the product of .Bk(x'), .Bz(y') and .Bm(z'), (3.37). 

3.3 EDGE ELEMENT EXPANSION 

3.3.1 Theory 

The edge element vectors, Ne, are defined as the union of N~x~lm' N~Y~lm' and N~z~lm' , ' , 
where i is the local edge number, 1 to 12, of a parallelepiped at the node (k, l, m). For a simple 

geometry of parallelepiped at the node (k, l, m), the edge element vectors are given by (24), in 

normalized coordinates, Fig. 3.1, as 

N~~~lm(x, y, z) 

N~~~lm(x, y, z) 

xPk(x)(P1(y) - xz(y))(Pm(z) - Xm(z)) 

xPk(x)xz(y)(Pm(z) - Xm(z)) 

xPk(x)(Pi(y) - X1(y))xm(z) 

(3.43) 

(3.44) 

(3.45) 
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(3.46) 

N~y)klm(x, y, z) = 
' 

yPz(y)(Pm(z) - Xm(z))(Pk(x) - Xk(x)) (3.47) 

N~y)klm(x, y, z) yPz(y)xm(z)(Pk(x) - Xk(x)) (3.48) 
' 

N~y)klm(x, y, z) yPz(y)(Pm(z) - Xm(z))Xk(x) (3.49) 
' 

N~y)klm(x, y, z) yPz(y)xm(z)xk (x) (3.50) 
' 

N~z)klm(x, y, z) = 
' 

zPm(z)(Pk(x) - Xk(x))(Pz(y) - xz(y)) (3.51) 

Ni~ klm(x,y,z) zPm(z)xk(x)(Pz(y) - xz(y)) (3.52) 
' 

Ni~) klm(x, y, z) zPm(z)(Pk(x) - Xk(x))x1(Y) (3.53) 
' 

Nr} klm(x, y, z) zPm(z)xk(x)x1(y) (3.54) 
' 

where, k = 0, 1, 2 ... Nx - 1, l = 0, 1, 2 ... Ny -1andm=0, 1, 2 ... Nz - 1, and, 

{ I, for 0 ~ (q - j) < 1 
Pj(q) = 

0, otherwise. 

Po(q - j) (3.55) 

{ q-j, for o~ (q-j) < 1 
Xj(q) 

0, otherwise 

= xo(q - j) (3.56) 

Outside the specified range, the edge vectors are zero. To change from normalized coordinate 

to non-normalized coordinate, one simply replaces x, y and z with x/lx, y/ly and z/lz where 

lx, ly and lz are the dimensions of the unit cell. In normalized form, the nodal coordinates are 

(k,l,m). 

To ensure a unique solution of dipole density, P, which is solenoidal in nature (3.8), we 

need to impose a gauge condition to remove all irrotational field components from its functional 

space. In edge element theory, the nodal shape function Nk, which is associated with the kth 

node of a parallelepiped, is defined as continuous, piecewise trilinear function (2). The gradient 
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of the nodal shape function can be expressed as a linear combination of edge shape functions. 

Hence, in general for a kth node we can write, 
E 

'VNk = LGekNe (3.57) 
e=l 

where E is the number of edges. Similarly, a set of shape functions Sf associated with the faces 

of the elements can introduced, (2). For each oriented face f = { i, j, k} = {j, k, i} = {k, i, j} 

having three vertices, the nodes i, j, k, we have 

Therefore for an edge e, we can define, 
F 

'V x Ne= L c,esf 
f=l 

(3.58) 

(3.59) 

where F is the number of faces. Hence we can express (3.11) in terms of face element shape 

functions as, 
E E F F 

P = LUe'V X Ne= L LCfeUeSf = LP!Sf (3.60) 
e=l e=l f=l f=l 

Thus, we can write 

CU=P (3.61) 

where, C is a E x F coefficient matrix, U is a 1 x E coefficient matrix and P is a 1 x F 

coefficient matrix and, 

Hence, 

F 

'V x 'VNk = l:(C G)1ksf = o 
f=l 

CG=Q 

(3.62) 

(3.63) 

where Q is a zero matrix. Hence, from equation (3.63) it follows that by adding any linear 

combination of columns of G to U, the sum will be a solution of equation (3.61). Hence, for 

this particular case, imposing a gauge condition is equivalent to having a unique solution to 

equation (3.61). 

From the graph theory, (16) and (19), we know that the rank 3 of the E x Np matrix G 

is Np - 1, where Np are the number of nodes in the graph, and for the F x E matrix C the 

3 Rank means the minimum number of linearly independent equations 
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rank is E - Np+ 1. The uniqueness of equation (3.61) is guaranteed if U in equation (3.10) is 

represented by E - Np + 1 degrees of freedom, i.e. U is represented by E - Np + 1 unknowns. 

To make the solution of (3.61) unique, we can eliminate edges, equivalent to removing a linear 

equation of the graph one by one until no solution of G can be found satisfying (3.63), hence 

by further adding any linear combination of columns of G to U will result in a new solution. 

The number of edges to be removed is Np -1, the same number of edges as that of the number 

of tree edges. Therefore, we can use only the cotree edges to reduce the set of equations and 

ensure a unique solution of the dipole densities. 

For a simple geometry of parallelepipeds, the cotree edges can consists of the edges that 

lie in the x and fJ directions, Fig. 3.2. Therefore, the curl of the Ne that are in the cotree is 

given by, 

V7 x [N~~~lm(x, y, z)] 

Pk(x) [fJ(Pt(y) - x1(y))(x:n(z) - Pm(z)) -

z(Pm(z) - Xm(z))(x{(y) -1l(y))] 

Pk(x) [fJxz(y)(x:n(z) - Pm(z)) -

z(Pm(z) - Xm(z))(Pt(y) - x/+1 (y))] 

Pk(x) [fJ(Pt(y) - xz(y))(Pm(z) - x:n+1 (z)) -

zxm(z)(xf (y) -1l(y))] 

Pk(x) [fJx1(y)(Pm(z) - x:n+l (z)) -

zxm(z)(Pt(y) - X{+i(Y))] 

Pt(y) [z(Pm(z) - Xm(z))(xk(x) - Pk(x)) -

x(Pk(x) - Xk(x))(x:n(z) - Pm(z))] 

Pt(y) [zxm(z)(xk(x) - Pk(x)) -

x(Pk(x) - Xk(x))(Pm(z) - x:n+l(z))] 

1l(y) [z(Pm(z) - Xm(z))(Pk(x) - xk+1 (x)) -

XXk(x)(x:n(z) - Pm(z))] 
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P,,(y) [zxm(z)(Pk(x) - X~+1 (x)) -

xXk(x)(Pm(z) - xi'n+1 (z))] 

xj(q) = 8(q - j) = x~(q - j) 

(3.64) 

(3.65) 

The domain of an edge element is four cells. In two neighboring cells the edge element 

shape function value changes from 0 to 1 to 0 linearly. Hence, if we consider the span of 

an edge shaped basis function over the two neighboring cells and redefine our edge shaped 

basis function such that its value goes from 0 to 1 and again 0, which is equivalent to rooftop 

function, then the curl of the basis function doesn't contain a delta term which is present when 

we have just one cell and the definition of the basis function changes from 0 to 1, 1 at the edge 

itself, and goes to zero just after the edge, i.e outside the cell. Therefore, for the computational 

purpose we can neglect the delta terms from the V' x Ne for the cells that are not associated 

with surface of the flaw. The surface delta terms will be taken care by the surface integral of 

(3.31). Hence, the reduced set of (3.64) will be, 

V' x [N~xLm(x, y, z)] 
' 

V' x [N~~Lm(x,y,z)] 

V' x [Nt~lm(x, y, z)] 

V' X [N~~Lm(x, y, z)] 

V' X [N~:)klm (x, y, z)] 

V' x [N~:Lm(x, y, z)] 

Pk(x) [-y(P,,(y) - x1(y))Pm(z) + z(Pm(z) - Xm(z))P,,(y)] 

Pk(x) [-Jix1(y)Pm(z) - z(Pm(z) - Xm(z))P,,(y)] 

Pk(x) [y(P1(y) - x1(y))Pm(z) + zxm(z)P,,(y)] 

Pk(x) [Yx1(y)Pm(z) - zxm(z)P1(y)] 

P,,(y) [-z(Pm(z) - Xm(z))Pk(x) + x(Pk(x) - Xk(x))Pm(z)] 

P,,(y) [-zxm(z)Pk(x) - x(Pk(x) - Xk(x))Pm(z)] 

P,,(y) [z(Pm(z) - Xm(z))Pk(x) + XXk(x)Pm(z)] 

(3.66) 
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3.3.2 Computation of Matrix Terms 

For the computation of the matrix terms in (3.12), the flaw is divided into volumetric cells. 

Only the cotree edges of the graph are labelled. Each edge has been assigned two indices, one 

is local to the cell and the other is global. The interaction of one local edge of a volumetric 

cell is taken with local edge of another volumetric cell and finally the interaction is added to 

the respective global edge number interaction 4 . 

3.3.2.1 Computation of v 0 Matrix Terms 

As the unperturbed electric field is transverse to the z-direction inside the conductor, we 

only need to consider the corresponding x and fj components of the V' x Ne in evaluating 

(3.13). For a particular edge, as the V' x Ne is a constant or a linear function in x and y, we 

can express the integration as a summation of values at 6 fixed points inside the cell with each 

weighted by i [see Eq. 25.4.67, page 895 of (1)]. For a particular cell at normalized coordinates 

of (k, l, m), we can take the center of each face as the fixed point for evaluating the integration, 

Fig. 3.1, namely points A to F. The value of V' x Ne at these points will be ±~. Hence, for 

local edge numbers from 1 to 8, 

{ V' x N(x) (r) ·E(o)(r)dr }v, 1, klm 
klm 

{ V' x N(x) (r) · E(o)(r)dr }v, 2, klm 
klm 

r V' x N~~Lm(r). E(O)(r)dr 
lvklm 

h V' x NtLm(r) · E(0l(r)dr 
vklm 

{ V' x N(y) (r) · E(o)(r)dr }v, 5, klm 
klm 

{ V' x N(y) (r) · E(o)(r)dr }v, 6, klm 
klm 

{ V' x N(y) (r) · E(o) (r)dr }v, 7, klm 
klm 

-Vo o 1 o o o o 
-6-[EA,y + 2(Ec,y + ED,y + EE,y + EF,y)] 

- Vo 0 1 0 0 0 0 )] -6-[EB,y + 2(Ec,y + ED,y + EE,y + EF,y 

Vo o 1 o o o o )] 5[EA,y + 2(Ec,y + ED,y + EE,y + EF,y 

Vo o 1 o o o o )] 5[EB,y + 2(Ec,y + ED,y + EE,y + EF,y 

-Vo o 1 o o o o ] - 6-[Ec,x + 2,(EA,x + EB,x + EE,x + EF,x) 

Voo 1 o o o o 5[Ec,x + 2,(EA,x + EB,x + EE,x + EF,x)J 

-Vo o 1 o o o o ] -6-[ED,x + 2,(EA,x + EB,x + EE,x + EF,x) 

4 For a given cell we can have 8 cotree edges, 4 in each x and fj directions, and we have E - Np + 1 global 
edges. In terms of number of discretization cells, Nx, Ny and Nz in the x, y and z directions respectively, we 
can rewrite E - Np+ 1 as 2NxNyNz + NxNy + NyNz + NzNx. 



www.manaraa.com

34 

1 ( ) (0) Vo 0 1 0 0 0 0 )] 
Vi V' x N8~ klm(r) · E (r)dr = 6[En,x + 2(EA,x + EB,x + EE,x + EF,x 

klm 

(3.67) 

where Vo = Volume of a cell of the flaw region, E~ x = x · E~ and similarly others. Hence, 
' 

(3.68) 

where E (E = 1, 2, 3, 4) are the local edge indices for the ith global mesh edges for x-directed 

edges and for y-directed edges, 

(V0)i = '°' { V' x N(y) (r) · E(o)(r)dr L..J }v, E, klm 
E klm 

(3.69) 

where E (E = 5, 6, 7, 8) are the local edge indices for the ith global mesh edges. 

3.3.2.2 Computation of R Matrix Terms 

In the R matrix, (3.14), we are requried to integrate a dot product of the form V' x Ni · 

V' x Nj. These integrals will be evaluated for a particular cell and the contributions from 

individual cells added to give the matrix element (R)ij· For the reduced set of (3.66), the key 

integrations required for all directions are, 

j+l i Pj(q)dq = 1 

1j+l 1 
h = x~(q)dq = -

J J 3 

1j+l 1 
Pj(q)xj(q)dq = -

J 2 

and the derived integrals from (3.70) are, 

Is = 

1j+l 1 
(P·(q) - X ·(q))2dq = -J J 3 

J 
rj+l 1 Ji Xj(q)(Pj(q) - Xj(q))dq = 6 

(3.70) 

(3.71) 

Note that (R)ij = (R)ji· Also note that we only need to find the interaction of local edges 

1 to 4 with local edges 1 to 8 analytically and the rest can be done by just rotation of the x, 

y and z components. Hence, the minimum terms that are required are, 
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h V7 X Nix~!m(r) · V7 X N~xLm(r)dr 
vklm , , 

h V7 X Nix~!m(r) · V7 X N~xLm(r)dr 
vklm , , 

h V7 X Nix~!m(r) · V7 X Nix~lm(r)dr 
vklm , , 

h V7 X Nix~!m(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X NixLm(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X NixLm(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X NixLm(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X N~xLm(r) · V7 X N~x~lm(r)dr 
vklm , , 

h V7 x N~xLm(r) · V7 x N~xLm(r)dr 
vklm , , 

h V7 X N~xLm(r) · V7 x Nix~zm(r)dr 
vklm , , 

h V7 X N~xLm(r) · V7 X N~y)klm(r)dr 
vklm , , 

{ V7 x N~x~zm(r) · V7 x N~y)kzm(r)dr 
Jvklm ' ' 

h V7 X N~x~!m(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X N~x~lm(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X N~x~!m(r) · V7 X N~x)klm(r)dr 
vklm , , 

h V7 X N~xLm(r) · V7 X Nix)klm(r)dr 
vklm , , 

h V7 X N~xLm(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X N~xLm(r) · V7 x N~y)klm(r)dr 
vklm , , 

h V7 X N~x~lm(r) · V7 X N~y)klm(r)dr 
vklm , , 

h V7 X N~x~lm(r) · V7 X N~y)klm(r)dr 
vklm , , 

1 
Ii [Isli - J4fi] = -6 

1 
Ii[-J4fi + Isli] = -6 

1 
Ii[-Isli - Isli] = -3 

1 
-Iifil4 = -3 

1 
-Iilils = -6 

1 
Iifil4 = 3 

1 
Iilils = 6 

2 
Ii [hli + J4Ji] = 3 

1 
Ii[-Isli - Isli] = -3 

1 
li[-hli + Isli] = -3 

1 
Iifil4 = 3 

1 
Iilils = 6 

1 
-Iifil4 = -3 

1 
-Iilils = -6 

2 
Ii[J4fi + hli] = 3 

1 
Ii[Isli - hli] = -6 

1 -Iilils = --
6 
1 

-Iilih = -3 
1 

Iilils = 6 
1 

Iilih = 3 
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r \7 x NixLm(r). \7 x NixLm(r)dr 
Jvklm ' ' h \7 X NixLm(r) · \7 X N~y)klm(r)dr 

vklm ' ' 
r \7 x NixLm(r). \7 x N~y)klm(r)dr 

Jvklm ' ' 
{ \7 x Nix~1m(r) · \7 x N~y)ktm(r)dr 

Jvklm ' ' 

h \7 X NixLm(r) · \7 X N~y)klm(r)dr 
vklm ' ' 

Using these integral we can evaluate (R)ij as 

2 
Ii [hli + hli] = 3 

1 
Iilils = 6 

1 
Iilih = 3 

1 -Iilils = --
6 
1 

-Iilih = -3 (3.72) 

(3. 73) 

where E and E1 (E, E1 = 1, 2, ... 12) are the local edge indices for the ith and jth global mesh 

edges. 

3.3.2.3 Computation of q( Matrix Terms 

Computation of (Lnij can be reduced to a point matching scheme where the basis function 

caluclated from a correlation integral and the testing function is a delta function as expressed 

in (3.42). Therefore, we are required to find the correlation function associated with each 

direction. Using the notation, 

[¢0 o ~1](q) = J 1>o(q + q')~1(q')dq' (3.74) 

where 'o' represents the correlation, we can define the key correlation functions that are in-

volved as, 

Case I 

C}1 (q), forJ-l:::;q<J 

C}(q) = [Po o x1](q) = C}2 (q), for J:::; q < J + 1 

0, otherwise 

(3.75) 
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f 1 (x' + q - J)dx' 
11-q 
1 J2 q2 
2 - J + 2 + q- Jq + 2 
{J+l-q 

lo (x' + q - J)dx' 

1 J2 q2 
2-2 +Jq- 2 

l: Pj,o(x)Pi,K(x + q)dx = l: Pi,o(x)Pj,-K(x - q)dx 

therefore, we can write 

(3.76) 

(3.77) 

(3.78) 

As the correlation term is normalized with respect to lq, therefore, we will have a factor of lq 

while computing L6. A similar analysis is also done for other key correlation terms. 

Case II 

C](q) = [xo o x1](q) = 

where, 

This function has a symmetry around q = J. 

0 22 
]l for J :S: q < J + 1 

0, otherwise 

(3.79) 

(3.80) 

(3.81) 
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Case III 

( q + 1 - J), for J - 1 S q < J 

C}(q) =[Po o P1](q) = (1 + J - q), for JS q < J + 1 (3.82) 

0, otherwise 

We can also write equation (3.82) as, 

CJ(q) = X1-1(q) + P1(q) - x1(q) (3.83) 

This function has a symmetry around q = J. And the derived correlation functions are, 

Cj(q) [(Po - xo) 0 (P1 - x1)](q) = cJ(q) - C~1(-q) - C}(q) + C](q) 

CJ(q) [(Po - xo) o x1](q) = C}(q) - C](q) 

c}(q) [xo 0 (P1 - XJ )](q) = C~1(-q) - CJ(q) (3.84) 

As the 'V x Ne for local edge numbers 5 to 8 are just the rotation of x, y and z in the local 

edge numbers 1 to 4 in addition to interchanging CJ(q) and CJ(q) with each other. Therefore, 

we only need to find the correlation functions associated with the interaction of edges 1 to 4 

with all of 8 edges of the other cell. Here also (L6)ij = (L6)ji as in the case of R matrix. The 

minimum terms that are required, 

{ 'V x N~~600 (r1 ) • 'V x Ni~kim(r + r')dr' 
Jnklm 

{ 'V x N~~600 (r') · 'V x N~~kim(r + r')dr' 
Jnklm 

{ 'V x N~~600 (r') · 'V x N~~kim(r + r')dr' 
Jnklm 

1 'V x Ni~600 (r1 ) • 'V x N~~klm(r + r')dr' 
nklm 

{ 'V x N~x600 (r') · 'V x N~ykim(r + r')dr' 
Jnklm ' ' 1 'V x N~x600 (r') · 'V x N~Yklm(r + r')dr' 

nklm , , 

1 'V x Ni~600 (r1 ) • 'V x N+:kim(r + r')dr' 
nklm 

{ 'V x N(x) (r') · 'V x N(y) (r + r')dr' Jr 1,000 8,klm 
nklm 

Cf(x)[C((y)C!(z) + C!(z)Cf (y)] 

Cf(x)[Cf (y)C!(z) - C!(z)Cf (y)] 

Cf(x)[-C((y)C!(z) + C~(z)Cf (y)] 

Cf(x)[-Cf (y)C!(z) - C~(z)Cf (y)] 

-Cf ( x )Cf (y )C! (z) 

-Cf ( x )Cf (y )C~ (z) 

Cf ( x )Cf (y )C! (z) 

Cf(x)Cf (y)C~(z) 
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h \7 X N~x600 (r') · \7 X NixLm(r + r')dr' nklm , , 

{ \7 x N~xci00 (r') · \7 x N~xkim(r + r')dr' 
Jnklm ' ' 

r \7 x N~~cioo(r'). \7 x N~~Lm(r + r')dr' 
Jnklm 

h \7 x N~~600 (r') · \7 x Ni~Lm(r + r')dr' 
nklm 
{ \7 x N~~600 (r') · \7 x N~~klm(r + r')dr' 

Jnklm 
{ \7 x N~~ci00 (r') · \7 x N~~kim(r + r')dr' 

Jnklm 
{ \7 x N~x600 (r') · \7 x Nn1m(r + r')dr' 

Jnklm ' ' 

l \7 x N(x) (r') · \7 x N(y) (r + r')dr' 2,000 8,klm nklm 

h \7 X N~~cioo(r') · \7 x Ni~klm(r + r')dr' 
nklm h \7 x N~x600 (r') · \7 x N~xLm(r + r')dr' nklm , , 

h \7 X N~x600 (r') · \7 x N~xLm(r + r')dr' nklm , , 

r \7 x N~~cioo(r'). \7 x Ni~Lm(r + r')dr' 
Jnklm 
{ \7 x N~~600 (r1 ) • \7 x N~~kim(r + r')dr' 

Jnklm 
{ \7 x N~~600 (r') · \7 x N~~kim(r + r')dr' 

Jnklm 

l \7 x N(x) (r') · \7 x N(y) (r + r')dr' 3,000 7,klm nklm 
{ \7 x N~~600 (r') · \7 x N~~klm(r + r')dr' 

Jnklm 

h \7 x Ni~cioo(r') · \7 x N~~Lm(r + r')dr' 
nklm 
{ \7 x Nixci00 (r') · \7 x N~xLm(r + r')dr' 

Jnklm ' ' 

{ \7 x Ni~600 (r') · \7 x N~~kim(r + r')dr' 
Jnklm h \7 x Nixcioo(r'). \7 X Nixklm(r + r')dr' nklm , ' 

Cf (x)[C16 (y)C!(z) - C!(z)Cf (y)] 

Cf (x)[C[(y)C!(z) + C!(z)Cf (y)] 

Cf (x)[-Cf (y)C!(z) - C~(z)Cf (y)] 

Cf (x)[-C?(y)C!(z) + C~(z)Cf (y)] 

Cf (x)Cf (y)C!(z) 

Cf (x )Cf (y )C~ (z) 

-Cf ( x )Cf (y )C! (z) 

Cf(x)[-C((y)C!(z) + C!(z)Cf (y)] 

Cf (x)[-Cz5(y)C!(z) - C!(z)Cf (y)] 

Cf (x)[C((y)C!(z) + C!(z)Cl(y)] 

Cf (x)[C15 (y)C!(z) - C!(z)Cf (y)] 

-Cf ( x )Cf (y )C! (z) 

Cf ( x )Cf (y )C! (z) 

Cf ( x )Cf (y )C! (z) 

Cf (x)[-C16 (y)C!(z) - C!(z)Cf (y)] 

Cf (x)[-C[(y)C!(z) + C!(z)Cf (y)] 

Cf (x)[Cf (y)C!(z) - C!(z)Cf (y)] 

Cf (x)[C[(y)C!(z) + C!(z)Cf (y)] 
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1 \7 x N(x) (r') · \7 x N(y) (r + r')dr' = C2(x)Cz3(y)C!(z) 
n 4,000 5,klm 
"klm 

{ \7 x Ni~600 (r1 ) • \7 x N~:kim(r + r')dr' C2(x)Cz3(y)C!(z) 
lnklm 

1 \7 x N(x) (r') · \7 x N(y) (r + r')dr' -Ck3(x)C13(y)Cm6 (z) 
n 4,000 7,klm 
"klm 1 \7 x Ni~600 (r') · \7 x N~:kim(r + r')dr' -C2(x)Cz3(y)C!(z) 
nklm 

(3.85) 

All these terms are in normalized coordinate system, hence while computing L~ we will have 

factor of Vo, i.e. the volume of the discretization cell. The integration of correlation function 

along with scalar Green's function of (3.18) can be preformed numerically by again taking few 

fixed points in a cell. As the correlation functions have zero value at the surface of its defining 

cell, therefore, we can subdivide the cell into smaller parts, typically x3 where x = 2, 4, 6 ... ,and 

use the same volume integration scheme as described in the computation of v 0 matrix. For 

self interacting cells we will have singularity present in the Green's function which can be dealt 

analytically. For self interacting cells we can divide the Green's function of (3.18) into two 

parts as, 
1 _ eiklr-r'I _ ik . (iklr-r'j) iklr;-r'I 1 

Go(rjr) - 4 I 'I - 4 smc 2 e + 4 I 'I 7rr-r 7r 7rr-r (3.86) 

The first part is now can be computed numerically as it doesn't contain any more singularity. 

For the later part, which is the singular part, we notice that in general the correlation function 

has a form of linear in x, cubic in y and linear again in z or linear in x, cubic in z and linear 

again in y for (3.85). For correlation function with linear in x, cubic in y and linear in z, we 

can write 

{3(x, y, z) = C2(x)Cf (y)C!(z) 

2 2 +asx + agxz + a10xy + auxyz + ai2xy + a13XY z 

+a14xy3 + ai5xy3z, where i = 2 or 4 or 5 or 6 (3.87) 

ao to ai5 are the constants determined by the correlation functions. For an exclusion zone of 

8a3 volume centered at origin, we can compute analytical value of the Green's function along 

with components of (3.87) in each quadrant. For this purpose Mathematica Software is used 

for finding the analytical results in the first quadrant, 0 1 , and for the rest of the quadrants we 
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can use the same value but with proper sign 5 . We only need to define a small set of analytical 

values as f01 4:ir1dr = f01 ~dr and similarly others. Hence the required set, 

Po = l1 4:lrl dr 0.094700a2 

1 i x 
Pl = ~ 01 47rlrl dr = 0.041030a2 

1 [ xy P2=- --dr 
a2 01 47rlrl 

0.018565a2 

1 [ xyz 0.008583a2 p3 = 3 4TT dr = a 0 1 7r r 
1 [ x2 0.025480a2 p4 = 2 4TT dr a 0 1 7r r 
1 [ x2y 0.011731a2 p5 = 3 4TT dr a 0 1 7r r 

1 [ x2yz 0.005478a2 P6 = 4 4T1 dr a 0 1 7r r 
1 [ x3 0.018333a2 P7 = 3 4T1 dr a 0 1 7r r 
1 [ x3y 0.008514a2 PB= 4 4TT dr a 0 1 7r r 
1 [ x 3yz pg= - -- dr 

a5 01 47rlrl = 0.003998a2 (3.88) 

The region outside the exclusion zone can be computed numerically as described earlier. 

3.3.2.4 Computation of L~ Matrix Terms 

For L~ matrix, we are looking at the interaction of the edges that are on the flaw-conductor 

interface only. From (3.66) and (3.31), for a surface directed in x direction we will be con-

sidering local edges 7 and 8, whereas for -x directed it will be local edges 5 and 6, similarly 

for fJ and z directed ones. In general, x ·Pi = ±ll(y)Pm(z). Here again, as in L6 case, we 

can reduce reduced (3.66) to a point matching scheme where basis function is a correlation 

function only in two variables and the testing function is a delta function. Hence we can use 

the same correlation functions as described in L6 matrix computation. For finding the value 

numerically, we can express integration in terms of summation of few fixed points [see Eq. 

5The singularity is an even function in x, y and z and hence the components of (3.87) will determine its sign 
of the analytical results in different quadrant. 
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25.4.62, page 892 of (1)] and can handle the singularity exactly in the similar manner. In 

this case we will have correlation function which will be product of two linear functions, e.g. 

product of linear in x-direction and y-direction for a surface normal in z-direction. For Lg 

matrix calculation purpose, the analytical set required will be 

qo = fo2 4:irl dr = 0.140275a 

qi = ! r _x_ dr = 0.051550a 
a 102 47rlrl 
1 J xy q2 = 2 -4 I I dr 0.021975a 

a 0 2 7r r 
(3.89) 

where 02 is 2D 1st quadrant and lrl = J x2 + y2 as the singularity is only present when the 

third variable is zero. Similar to Rand L6, here also we have (Lg)ij = (Lg)ji· 

3.3.2.5 Computation of oL Matrix Terms for a Half Space Problem 

The ogee(rlr') for a half space conductor is given by (3.19) and V(rlr') is defined by (3.20). 

In the case half-space conductor, we have z+z' > 0, hence - sign will used in (3.20). In (3.20), 

Lz is the partial derivative of L with respect to z and L is given by Foster-Lien integral and 

expressed in terms of Kelvin functions as, 

(3.90) 

where S2 = p2 + (2 and 'Y = J s2 - k2 with positive real part root (reference chapter 9 of (1)). 

The partial reflection term can be rewritten as, 

: 2 [\7 x 2 [\7 1 x 2V(rlr')]] = : 2 (3.91) 

0 0 0 

A detailed discussion on computing Lxxz, Lyyz and Lxyz using Kelvin functions is given on 

page 15 of (9). Computation of the image and the transverse electric terms can be reduced 

to a similar form as that for L6 and Lg in addition to changing the correlation function in z 

direction to a convolution function. Using the notation, 

[</>o * 'l/JJ](q) = J </>o(q - q')'lf;J(q')dq' (3.92) 
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where '*' represents the convolution, we can define the key convolution as, 

Case I 

! ( J _ q) 2, for J ::::; q < J + 1 

D}(q) =[Po* XJ](q) = !(-2J - J 2 + 2q + 2Jq - q2), for J + 1 ::::; q < J + 2 (3.93) 

0, otherwise 

As its a convolution, therefore, we can write, 

[Po* XJ](q) = [xo * PJ](q) (3.94) 

Here also the term is normalized with respect to lq, therefore, we will have a factor of lq while 

computing its respective matrix term. 

Case II 

for J ::::; q < J + 1 

D}(q) = [xo * XJ](q) = i(-4 + J 3 + 6q - 3J2q - q3 + 3J(q2 - 2)), for J + 1 ::::; q < J + 2 

0, otherwise 
(3.95) 

This function has a symmetry around q = J + l. 

Case III 

( q - J), for J ::::; q < J + 1 

D}(q) = [Po* PJ](q) = (2 + J - q), for J + 1 ::::; q < J + 2 (3.96) 

0, otherwise 

This function has a symmetry around q = J + 1. And the derived convolution functions are, 

Dj(q) 

D}(q) 

[(Po - xo) * (PJ - XJ )](q) = D}(q) - 2D}(q) + D2 (q) 

[(Po - xo) * XJ](q) = D}(q) - D2 (q) (3.97) 
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Using these convolution terms and previously defined correlation functions we can also compute 

the partial reflection terms. In partial reflection terms we only need to consider the x or fJ 

directed components of the (3.66) and the double partial derivatives of G0 (rlr' - 2.Zz') are, 

a2Go(rlr' - 2.Zz') = eikR [2_(x - x')2 - 3ik (x - x')2 - _!_ - k2 (x - x')2 + ikl 
8x2 41rR2 R3 R2 R R 

(3.98) 

and 
82Go(rlr' - 2zz') = eikR [2_ _ 3ik _ k2] ( _ ')( _ ') 

oxoy 41f R3 R2 R x x y y (3.99) 

where R = J(x - x') 2 + (y - y') 2 + (z + z') 2 . Here also we have (c5L)ij = (c5L)ji· 

3.4 RESPONSE DUE TO A MAGNETIC SENSOR 

A magnetic field sensor response due to an ideal crack is given in terms of sensor current 

density JM(r) and the scattered electric field E(s)(r), 

b,.H = - { E(s)(r) · JM(r)dr 
lcail 

(3.100) 

where the integration is performed over the coil region. By using reciprocity principle (22) and 

(9), we can rewrite (3.100) in terms of incident field of the magnetic sensor E~(r) and the 

dipole density of the flaw region P(r) as, 

From (3.11) and (3.101), 

b,.H = - { E~ (r) · P(r)dr ln1 
(3.101) 

(3.102) 

The integral of (3.102) can be solved in the similar manner as that for finding the terms of 

y(o) and the unknowns, Ue, are computed from (3.12). As y(O) matrix values depend upon 

the position of the excitation coil as the incident electric field changes, therefore, the unknown 

matrix of U will also be a function of the probe position. But the rest of the matrixes, on the 

left hand side of (3.12)are independent of the probe position. Hence for finding the unknowns, 

its best to find the inverse of the left hand side matrix first and then update the unknown 

values with respect to new probe position. For this purpose a LU decomposition technique, 

chapter 2 of (29), is used for finding the solution of the unknowns. 
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3.5 RESULTS 

An example of sensor response to an ideal crack inside a half-space conductor is presented, 

3.3. Crack of dimensions 3mm x 3mm x 3mm is assumed. Other related dimensions are listed 

in Table 3.1. A comparison is made for the same crack between the results of the magnetic 

sensor with the new code (using edge shaped basis functions) with that of the old code (using 

point matching scheme). Fig. (3.4) shows the magnitude and phase of the vertical magnetic 

field at the the center sensor due to the ideal crack. From Fig. (3.4), we can clearly see that 

we have a good match between the phase of the magnetic sensor from the new code and with 

that of the old code. On the other hand, we don't have a match between the magnitude plot. 

This can be due to the problem of not finding correct results of the analytical solution of the 

singularity in the case of L6 matrix. 

3.6 CONCLUSIONS 

A theory has been developed for modelling of the flaw region using edge element shaped 

based basis functions for a magnetic sensor response. Dipole density due to the excitation coil 

is represented in terms of the new basis function and the dipole densities are found by the use 

of electric field integral equation. The use of edge element shaped basis function guarantee 

the zero divergence property of the dipole density inside the flaw region. The equation has 

been approximated using moment method and a Tree-Cotree decomposition is used to reduce 

the size of the matrix equation. The solution of the matrix equation is found by using LU 

decomposition technique. Its application is looked for a problem of an ideal crack in a half-

space conductor problem. Based on the theory, a computer simulation code has been written 

and test for the above problem and the results are compared with the older technique of point 

matching. The results show a good match between the phase found by the new technique and 

the old technique. But some issues regarding the magnitude has yet to be solved. The technique 

looks promising for modelling complex geometries. Tetrahedral modelling will be more useful 

in the flaw discretization of complex geometries as compared to using parallelepiped division. 
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Table 3.1 Test parameters for magnetic sensor measurements for a circular 
coil excitation. 

Outer radius 
Axial length 
Number of turns 
Height of sensors 
Coil Current 

Conductivity 

3.89 mm 
5.99 mm 
517± 1 mm 
0.869 mm 
1.0 Amp 

Coil 
Inner radius 
Nominal lift-off 
Number of sensors 
Distance between sensors 
Frequency 

Plate 
1.82 x 107 S/m Flaw Depth 

1.55 mm 
2.5825 mm 
33 
2.0 mm 
2000 Hz 

4.85 mm 
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Red Cross: Front face centers 
Black Cross: Back face centers 

I 

k 
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4 

2 

IO 

Figure 3.1 Local edge numbering for a parallelepiped at (k, l, m) showing 
face centers (A to F) . 



www.manaraa.com

TREE EDGES - BLUE 

COTREE EDGES - RED 

48 

Figure 3.2 Tree-Cotree decomposition. 
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3mm 

3mm 

(a) Top View 

Air 

Conductor I 

4.85 mm 

,,. 
'~ 

3mm 

,, 
~ ~ 

3mm 

(b) Side View 

Figure 3.3 Half space conductor showing a volumetric recess of dimension 
3mm x 3mm x 3mm at 4.85mm from the conductor-air surface. 
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Figure 3.4 Magnitude and phase of the magnetic field for one sensor at the 
center of the excitation coil. The N in the figure for the new 
code results indicates that the fl.aw discretization is NxNxN. 
Comparison between old code and new code is shown. The 
discretization of 3x3x3 is done for the old code. 
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CHAPTER 4. SUMMARY AND DISCUSSION 

4.1 GENERAL DISCUSSION 

The purpose of this study was to investigate different aspects of the crack characterization 

using eddy current methods. The first part dealt with the modelling of a new type of coil, a 

racetrack coil, along with multi sensors scheme, which is needed for a faster scan of a given 

surface, and the second part was devoted to flaw modelling using a new basis function, edge 

element shaped basis function, for better convergence to the solution. 

The theory of the racetrack coil, in presence of a stratified conductor, has been divided into 

two parts. The first part for the two straight parts and the second part for the two separate 

semicircular bends. The field due to both the parts are formulated based on magnetic dipole 

representation of the flaw or crack due to the excitation coil. The field due to the straight 

parts is found using a two dimensional Fourier transform, whereas, the field due to the two 

semicircular bends is based on integrals containing Bessel functions. A linear array of magnetic 

sensors are incorporated with the design of the racetrack coil. The linear array of magnetic 

sensors are parallel to the center line of the racetrack coil. This has an advantage over the 

use of a single sensor as we can scan a given area in one single sweep which will save the 

scanning time. The design of the new coil along with the multiple sensors is compact and easy 

to manipulate. The racetrack simulation results are compared to an older circular coil. 

In the second part of the thesis, a new technique for flaw characterization is presented. 

Edge based basis functions are introduced, as compared to using linear roof hat functions, 

for the representation of the unknown dipole density inside the flaw or crack region due the 

excitation coil. The unknown dipole density functions are expanded in terms of the edge 

element shaped functions and variant of Galerkin method for moment method is applied for 
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solving the matrix equations. Edge element shaped basis functions satisfies the condition of 

having a zero divergence of the dipole density inside the flaw or crack region. A Tree-Cotree 

decomposition is used for reducing the number of unknowns. Use of this new technique is 

looked for a problem of crack in a half-space conductor. 

4.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

In the thesis use of edge element shaped basis function is presented. A discretization 

scheme using parallelepiped is used for modelling a flaw or a crack region is looked at. For 

any arbitrary shaped flaw, the use of parallelepiped for its discretization will not be that help. 

Hence, use of some other discretization scheme is needed. One such solution would be use of 

tetrahedral modelling which can provide a better meshing with that of the flaw region. 
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APPENDIX A. NUMERICAL SOLUTION FOR .:Tv"(z) 

.J;}(z) is defined as, 

(A.1) 

where n = 1 or 2 and m = 0, 1, 2, 3 .... Bessel function is defined in terms of summation series 

as, Eq. 9.1.10 of (2), 

(A.2) 

If v is an integer then, 

(A.3) 

From (A.1) and (A.3), 

( )
k 

n z _ zn+l :_ 4 ) 
v oo _lz2 

.1v( )- (2 ~k!(v+k)!(v+n+2k+l) (A.4) 

If the argument of z is small, typically less then 6.0, then we can compute the value of .J;}(z) 

numerically by expressing as a summation of a series with the requirement of smaller number 

of terms need in (A.4). But for larger arguments its difficult to get an accurate result with 

this method. For large argument of v we can use a recursive relationship based on recursive 

relationship for the Eq. 11.3.1 of (2). The generalized equation is, 

(A.5) 

where Zv(z) represents any of the Bessel functions of the first three kinds or the modified 

Bessel functions. A recursive relationship of (A.5) is given by Eq. 11.3.6 of (2), 

a (v - µ) 9µ, v+l (z) = -2 v e-pz zµ Zv(z) - 2 v p 9µ, v(z) + b (µ + v) 9µ, v-1 (z) (A.6) 
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where a= b = 1 for Zv(z) to be Jv(z), Eq. 11.3.2 of (2). For our problem for p = 0, we can 

reduce (A.6) to, 

(v - n) J;:+l (z) = -2 v Zn Jv(z) + (v + n) J;:_1 (z) (A.7) 

We can use this recursive relationship for finding the values of Ji) ( z) for v > 3. 1 For v :::; 3 

and z :::; 6 can be solved as describe earlier. For v ::=; 3 and z > 6, we can split the integral into 

two parts. The first part will be the integration from 0 to 6 and second form 6 to z as, 

(A.8) 

For the second part we can assume that the argument of Bessel function, z, is large and can 

use Hankel's Asymptotic expansion for the Bessel function, Eq. 9.2.5 of (2), 

lv(z) = (2 [P(v, z) cos x - Q(v, z) sin x] V;; (A.9) 

where x = z - ¢ = z - (~ + ~)7r and P(v, z) and Q(v, z) are given by Eq. 9.2.9 and Eq. 9.2.10 

of (2) as, 

P(v z) ,...., 1 _ (µ - 1)(µ - 9) (µ - 1)(µ - 9)(µ - 25)(µ - 49) _ ... 
' 2! (8z) 2 + 4! (8z) 4 

(A.10) 

and 
µ - 1 (µ - 1)(µ - 9)(µ - 25) 

Q(v, z) ""' ----s;- - 3! (8z)3 + ... (A.11) 

whereµ= 4v2 . Hence, we can express (A.9) as, 

f2 [ ( P2 P4 ) ( q1 q3 ) . ] lv(z) = y-;; Po - z2 + z4 - . . . cos(z - ¢) - -; - z3 +... sm(z - ¢) (A.12) 

where Po,P2,p4, ... are the coefficients of the z2 , z4 , ... terms of (A.10) and q1, q3, ... are the 

coefficients of the z, z3 , ... terms of (A.11). Combining (A.12) with the second integral of 

(A.8), we can write 

(A.13) 

1 v > 3 is limited by the fact that we haven= 1 or 2. 
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I2m {z xn-2m-t cos(x - </>)dx 
lzo 

I2m+1 = {z xn-2m-~ sin(x - </>)dx 
lzo 

We can rewrite (A.14) as, 

rz 1 rzo 1 lo xn-2m-2 cos(x - </>)dx - lo xn-2m-2 cos(x - <f>)dx 

r 3 rzo 3 lo xn-2m-2 sin(x - </>)dx - lo xn-2m-2 sin(x - <f>)dx 

and performing integration by parts we can form a recursive relationship as, 

1 [ . ( ,1..) n-2m-l · ( ,1..) n-2m-l T ) 
1 sm z - '+' z 2 - sm zo - '+' zo 2 - 12m 

n-2m- 2 

1 [ ( ,1..) n-2m-2 ( ,1..) n-2m-2 + T ] 
3 COS Z - '+' Z 2 - COS zo - '+' zo 2 12m- l 

n-2m- 2 

(A.14) 

(A.15) 

(A.16) 

Therefore, we can reduce all Im terms to Io form. We can solve Io using Fresnel integrals, Eq. 

7.3.1 and Eq. 7.3.2 of (2). Eq. 7.3.1 and Eq. 7.3.2 of (2) can be rewritten as, 

r 1 lo x-2 cos(x)dx 

rz 1 lo x-2 sin(x)dx 

For n = 1, we can solve Io using (A.15) as, 

where I1 (y) is defined as, 

~c(f§) 

~s(f§) 

I1(y) = yt sin(y - ¢)-Vi [cos(</>)S(y) - sin(¢)C(y)] 

and for n = 2 case, 

where I2 (y) is defined as, 

2. 31 3{if . I 2(y) = y2 sm(y - ¢) + 2y2 cos(y - ¢) - 2,V 2 [cos(¢)C(y) + sm(¢)S(y)] 

2ur t ' d ' £ 11 l µ-{4m+1}2 µ-{4m-1)2 
vve can compu e p s an q s as o ows: po = , q2m+1 = P2m s{ 2m+l} , P2m = q2m-1 16m 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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For solving (A.18) and (A.20), we need to solve for Fresnel integrations. We can express C(z) 

and S(z) as, Eq. 7.3.9 and Eq. 7.3.10 of (2), 

C(z) 

S(z) 

~ + f ( z) sin ( ~ z2) - g ( z) cos ( ~ z2 ) 

~ - f ( z) sin ( ~ z2) - g ( z) cos ( ~ z2 ) 

where f (z) and g(z) are defined by, Eq. 7.3.27 and Eq. 7.3.28 of (2),3 

'lfZj (z) l+ ~(-l)ml.3 ... (4m-1) 
/;;:l (7rz2)2m 

7rzg(z) ,...., ~ (-l)m 1.3 ... (4m + 1) 
~ (7rz2)2m+l 

m=O 

(A.22) 

(A.23) 

The values of J(}(z) using this technique are validated with Mathematica Software, (35). 

3 As we are assuming that we have large argument of z, hence we can use asymptotic expansions of f(z) and 
g(z). 
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